ENGINEERING MANAGEMENT

Engineering Management

The four-year Bachelor of Science degree program in Engineering Management (EGM) prepares students for eventual leadership responsibilities in technological environments. Traditional paths for EGM graduates include project management, project engineering, process management, new product development, manufacturing management, new product development processes, quality control, and reliability analysis.

The EGM program integrates the engineering disciplines of electrical and mechanical engineering with business. Flexibility exists for the student to develop concentrations in Information Systems or Entrepreneurship, for example. This program is attractive to companies seeking graduates who are well-rooted in engineering fundamentals, yet who are broadly interested in technology, competitive markets, and business development. Wilkes University does not maintain professional accreditation for the Engineering Management degree.

The EGM program demands careful academic program planning by the student with his or her faculty advisor to assure a clear and well-planned program configured realistically to the student's interests and needs.

The Master of Science degree in Engineering Management (MSEGM) is also available. This degree program is described in the Graduate Bulletin.

Engineering Management Major - Required Courses and Recommended Course Sequence

First Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[MTH-111]</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>[CHM-117]</td>
<td>Chemistry for Engineers Lab</td>
<td>1</td>
</tr>
<tr>
<td>[CHM-118]</td>
<td>Chemistry for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>[ME-180]</td>
<td>CADD Lab</td>
<td>1</td>
</tr>
<tr>
<td>[ENG-101]</td>
<td>English Composition</td>
<td>4</td>
</tr>
<tr>
<td>[FYF-101]</td>
<td>First-Year Foundations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[MTH-112]</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>[PHY-201]</td>
<td>General Physics I</td>
<td>3</td>
</tr>
<tr>
<td>[PHY-204]</td>
<td>Physics I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>[ME-140]</td>
<td>Scientific Programming</td>
<td>3</td>
</tr>
<tr>
<td>[EGR-200]</td>
<td>Introduction to Materials Science</td>
<td>3</td>
</tr>
<tr>
<td>[EC-102]</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Third Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[MTH-211]</td>
<td>Introduction to Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>[PHY-202]</td>
<td>General Physics II</td>
<td>3</td>
</tr>
<tr>
<td>[PHY-205]</td>
<td>Physics II Laboratory</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[EE-211]</td>
<td>Electrical Circuits and Devices</td>
<td>3</td>
</tr>
<tr>
<td>[EE-283]</td>
<td>Electrical Measurements Lab</td>
<td>1</td>
</tr>
<tr>
<td>[ME-231]</td>
<td>Statics Distribution Requirement</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Fourth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[EGM-320]</td>
<td>Engineering Project Management and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>[ME-232]</td>
<td>Strength of Materials</td>
<td>3</td>
</tr>
<tr>
<td>[ME-175]</td>
<td>Intro. to Manufacturing and Machining</td>
<td>1</td>
</tr>
<tr>
<td>[MTH-150]</td>
<td>Statistics</td>
<td>3</td>
</tr>
<tr>
<td>[MKT-221]</td>
<td>Marketing</td>
<td>3</td>
</tr>
<tr>
<td>[EGR-222]</td>
<td>Mechatronics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Fifth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[MGT-251]</td>
<td>Management of Organizations and People</td>
<td>3</td>
</tr>
<tr>
<td>[ME-215]</td>
<td>Intro. to Manufacturing Processes</td>
<td>3</td>
</tr>
<tr>
<td>[FIN-240]</td>
<td>Introduction to Finance</td>
<td>3</td>
</tr>
<tr>
<td>[ACC-161]</td>
<td>Accounting</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Sixth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[EGM-399]</td>
<td>Cooperative Education** or Technical Elective*</td>
<td>6/3</td>
</tr>
<tr>
<td>[EGR-201]</td>
<td>Professional Ethics</td>
<td>1</td>
</tr>
<tr>
<td>[EGM-321]</td>
<td>Quantitative Analysis & Programming Methods</td>
<td>3</td>
</tr>
<tr>
<td>[ME-322]</td>
<td>Engineering Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>[IBA-335]</td>
<td>Business Law</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Seventh Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[EGM-391]</td>
<td>Senior Project I</td>
<td>1</td>
</tr>
<tr>
<td>[EGM-336]</td>
<td>Engineering and Management Models</td>
<td>3</td>
</tr>
<tr>
<td>[EGM-325]</td>
<td>Project Analysis and Resource Allocation</td>
<td>3</td>
</tr>
<tr>
<td>[EGR-398]</td>
<td>Principles of Quality Management</td>
<td>3</td>
</tr>
<tr>
<td>[PPD-301]</td>
<td>Personal and Professional Development</td>
<td>1</td>
</tr>
</tbody>
</table>

Wilkes University Undergraduate Bulletin 2019 - 2020
Eighth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGM-392</td>
<td>Senior Project II</td>
<td>2</td>
</tr>
<tr>
<td>EGM-310</td>
<td>Project Decision Process</td>
<td>3</td>
</tr>
<tr>
<td>EGM-322</td>
<td>Operations Analysis and Resource Allocation</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Technical Elective*</td>
<td>3</td>
</tr>
<tr>
<td>PPD-401</td>
<td>Personal and Professional Development</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Distribution Requirement</td>
<td>3</td>
</tr>
</tbody>
</table>

Distribution Requirement

<table>
<thead>
<tr>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
</tr>
</tbody>
</table>

*Technical electives may be chosen from any advisor-approved math, science, or engineering course numbered 200 or above.

**Consult with the Cooperative Education Coordinator to determine availability and proper scheduling of the Cooperative Education experience.

EGM. ENGINEERING MANAGEMENT

EGM-310. FUNDAMENTALS OF ENGINEERING DECISION PROCESS
Credits: 3

An Introduction to Economic Decisions processes and techniques relating to technical processes and projects. This course will show how to properly define economic decision parameters and make project decisions based on economic guidelines such as revenue, cost and product or process performance. Concepts of engineering economy are reviewed briefly with respect to estimated value, projected cash flow, and risk associated with engineering projects.

Pre-Requisites
[EGM-320]

EGM-315. QUALITY PRACTICES FOR DESIGN & OPERATIONS
Credits: 3

This course provides students with an overview of important topics relating to Quality Assurance systems and processes directly related to engineering functions. Topics range from voice of the customer to the history and application of TQM. Cornerstone features include coverage of topics essential to any industry: customer focus creation, value creation, leadership, process improvement and management, strategic planning, measures of performance, supply chain management, human resources management, knowledge and information management, project management and business process.

Pre-Requisites
[EGM-320]

EGM-320. ENGINEERING PROJECT MANAGEMENT AND ANALYSIS
Credits: 3

Pre-Requisites
[MTH-111]

EGM-321. QUANTITATIVE ANALYSIS AND PROGRAMMING METHODS
Credits: 3

Discussion of various quantitative analysis and optimization methodologies. Analytical numerical approaches are used in solving linear and nonlinear optimization problems. Emphasizes the development of ability in analyzing problems, solving problems by using software, and post solution analysis.

Pre-Requisites
Junior standing in engineering or consent of the instructor.

EGM-322. OPERATIONS ANALYSIS & RESOURCE ALLOCATION
Credits: 3

Introduction to Operations Analysis and Resource Allocation offers topics relating to technical processes and projects required in engineering, manufacturing, and service-related industrial applications. The course covers those engineering subjects from forecasting analysis methods to manufacturing line balancing, queuing, and operation locations selections. Students will model and assess production flows and asset utilization for purposes of reducing production bottlenecks while maintaining/increasing facility utilization.

Pre-Requisites
[EGM-320]

EGM-325. PROJECT ANALYSIS & RESOURCE ALLOCATION
Credits: 3

This course offers experience in managing a project. Topics relating to project planning, costing, resources, and critical path and other analyses relating to manufacturing, research, and service-related industrial applications are discussed. The course covers engineering subjects from project definition and planning methods to earned value planning and analysis.

Pre-Requisites
[EGM-320]

EGM-336. ENGINEERING AND MANAGEMENT MODELS
Credits: 3

Discussion of the techniques in and the art of modeling practical problems encountered by engineers and managers.

Pre-Requisites
Junior standing in engineering or consent of the instructor.
EGM-391. SENIOR PROJECTS I
Credits: 1
Design and development of selected projects in the various fields of engineering under the direction of a staff member. Technical as well as economic factors will be considered in the design. A detailed progress report is required.

Click here for course fee.

Pre-Requisites
Senior standing in engineering, [[EGM-320]]

EGM-392. SENIOR PROJECTS II
Credits: 2
Design and development of selected projects in the field of engineering management under the direction of a staff member. Technical as well as economic factors will be considered in the design. A professional paper to be presented and discussed in an open forum is required.

Pre-Requisites
[[EGM-391]]

PHY. PHYSICS

PHY-198-298-398. TOPICS IN PHYSICS
Credits: variable
Selected topics in the field of physics. These may include one or more of the following: astronomy; geophysics; biophysics; nuclear power and waste; relativity; quantum mechanics; semi-conductors; cryogenics; health physics. May be repeated for credit.

Pre-Requisites
Varies with topic studied.

PHY-395-396. INDEPENDENT RESEARCH
Credits: 1 - 3
Independent study and research for advanced students in the field of physics under the direction of a staff member. A research paper at a level significantly beyond a term paper is required.

Pre-Requisites
Senior standing and approval of the department chairperson.

PHY-105. CONCEPTS IN PHYSICS
Credits: 3
Basic concepts of physical science, including the scientific method, will be studied. Theories, laws, and experiments from mechanics, electricity and magnetism, thermodynamics, optics, and atomic and nuclear physics may be included. Viewpoints will be classical and modern, including quantum and relativistic. Class meets for four hours per week: two hours of lecture and one two-hour lab each week.

Click here for course fees.

Pre-Requisites
No previous background in either science or college-level mathematics is required.

PHY-140. SCIENTIFIC PROGRAMMING
Credits: 3
This course presents an introduction to computer programming with an emphasis on the techniques needed for data analysis and numerical problem solving for scientific and engineering applications. Basic programming idioms are presented including control structures, data types, methods for handling input and output as well as numerical methods such as array computing and vectorization. Emphasis is placed on proper software engineering practice as well as data analysis and presentation. Two hours of lecture and two hours of laboratory per week.

Pre-Requisites
Or Concurrent
[[MTH-100]] or [[MTH-111]]

PHY-170. CONCEPTS IN PHYSICS AND CHEMISTRY
Credits: 4
An overview of Classical Mechanics, Thermodynamics, and the elementary principles of modern physics, including selected topics in basic chemistry and applications to human health. Emphasis is placed on basic physical and chemical principles and on algebraic calculations, scaling, units conversions, Cartesian graphing, acid and base reactions, and numerical problem solving. Three hours of demonstration and lecture, one hour of recitation, and two hours of lab per week.

Click here for course fees.

Pre-Requisites
Previous courses in chemistry, algebra, and geometry.

PHY-171. PRINCIPLES OF CLASSICAL AND MODERN PHYSICS
Credits: 4
An introductory course designed to promote and understanding of the more important fundamental laws and methods of mechanics and electricity and magnetism. Laboratory work to emphasize basic principles and to acquaint the student with measuring instruments and their use, as well as the interpretation of experimental data. Three hours of demonstration and lecture, one hour of recitation, and two hours of lab per week. Co-requisite: [[MTH-111]]

Click here for course fees.

PHY-174. APPLICATION OF CLASSICAL AND MODERN PHYSICS
Credits: 4
An introductory course designed to promote an understanding of the more important fundamental laws and methods of heat, optics, and modern physics. Laboratory work to emphasize basic principles and to acquaint the student with measuring instruments and their use, as well as the interpretation of experimental data. Three hours of demonstration and lecture, one hour of recitation, and two hours of lab per week. Co-requisite: [[MTH-111]]

Click here for course fees.

PHY-201. GENERAL PHYSICS I
Credits: 3
A thorough grounding in the concepts, principles, and laws of mechanics, and wave motion. Instruction by demonstration and lecture, recitation, and problem solving. Four hours of demonstration and lecture per week.

Click here for course fee.

Co-Requisites
[[MTH-111]] and [[PHY-204]]
PHY-202. GENERAL PHYSICS II
Credits: 3
A thorough grounding in the concepts, principles, and laws of Electricity and magnetism, optics and light. Instruction by demonstration and lecture, recitation, and problem solving. Four hours of demonstration and lecture per week.

[Click here for course fee.]

Pre-Requisites
[[PHY-201]]

Co-Requisites
[[MTH-112]]
[[PHY-205]]

PHY-203. MODERN PHYSICS
Credits: 3
Modern physics including the experimental basis, concepts, and principles of atomic and nuclear physics. Three hours of demonstration and lecture per week.

Pre-Requisites
[[PHY-202]]

PHY-204. GENERAL PHYSICS I LAB
Credits: 1
Fees: $100
This is a one-semester introductory physics laboratory course for science and engineering students. Experiments are performed to reinforce the concepts learned in PHY 201. Includes one two-hour laboratory exercise per week.

Co-Requisites
[[PHY-201]]

PHY-205. GENERAL PHYSICS II LAB
Credits: 1
Fees: $100
This is a one-semester introductory physics laboratory course for science and engineering students. Experiments are performed to reinforce the concepts learned in PHY 202. Includes one two-hour laboratory exercise per week.

Pre-Requisites
[[PHY-204]]

Co-Requisites
[[PHY-202]]

PHY-206. MODERN PHYSICS LAB
Credits: 1
Experiments leading to the development of relativity and quantum theory to reinforce abs expand upon the learning of fundamental concepts in EM theory, relativity, statistical mechanics, quantum mechanics, solid state physics, and nuclear physics.

[Click here for course fee.]

Pre-Requisites
[[PHY-202]], [[PHY-204]], [[PHY-205]]

Co-Requisites
[[PHY-203]]

PHY-214. APPLIED PHYSICS
Credits: 3
Modeling of various problems in physical, chemical, biological, and environmental sciences, particularly physical dynamical systems; Includes application of ordinary differential equations, and Laplace, Fourier, and Z transforms to continuous and discrete processes, matrix mechanics and eigenvalue problems, statistics and probability, random processes and distribution functions. 2 hours of lecture and 2 hours of laboratory per week.

[Click here for course fee.]

Pre-Requisites
[[MTH-211]], [[EE-140]] or [[CS-125]]

PHY-311. THERMODYNAMICS & STATISTICAL MECHANICS
Credits: 3
This course focuses on the laws of thermodynamics and other thermodynamic concepts including entropy, free energy, equilibrium, and fluctuations as well as their pivotal role in physics and other scientific disciplines. Topics in statistical mechanics will be covered including partition functions, ensembles, kinetic theory, and phase transitions. Three hours of lecture per week.

Pre-Requisites
[[PHY-203]] and [[MTH-211]].

PHY-312. ANALYTICAL MECHANICS
Credits: 3
Employs advanced mathematical tools to study applications in complex mechanical systems. It offers an advanced differential reformulation of Newton's laws to study dynamical systems in multiple dimensions, conservative force fields, damped and driven oscillations, two-body problem, central forces and planetary motion, and the rotational dynamics of rigid bodies. Additionally, the course delivers a thorough grounding on the calculus of variations, Lagrange's formalism and Hamiltonian mechanics, all being the essential foundations for the development of modern physics (relativity, quantum mechanics, and quantum field theory). Three hours of lecture per week.

Pre-Requisites
[[PHY-202]] and [[MTH-211]].

PHY-314. QUANTUM MECHANICS
Credits: 3
This course presents an intermediate level of Quantum Mechanics using the abstract formulation of linear vector spaces in the Dirac formalism. Topics covered include: spin, addition of angular momentum, scattering and bound particles, the harmonic oscillator, two-body problem and central potential wells in 3D, H-atom and H-like atoms, time-independent perturbation theory, identical particles and the He-atom. In addition to the foundations of Quantum Mechanics, the course offers a selection of advanced and modern topics like entanglement and quantum teleportation. Three hours of lecture per week.

Pre-Requisites
[[PHY-203]], [[CHM-115]], [[MTH-211]], and [[MTH-212]].
PHY-374. IMAGING IN BIOMEDICINE
Credits: 3
This course will cover different aspects of imaging important to medicine and biomedicine including optical microscopy, scanning probe microscopy, scanning electron microscopy, magnetic resonance, ultrasound X-ray, nuclear radiation, microwave and electro-/magneto-encephalographic techniques as well as image processing. Three hours of lecture and three hours of lab per week.
Click here for course fee.

Pre-Requisites

PHY-377. BIOPHYSICS
Credits: 3
This course presents an overview of the important physical principles governing the behavior of cells and macromolecules. Upper-level mathematics that are useful to understand these phenomena are introduced in a way that is comprehensible to biology majors lacking background beyond basic calculus. In addition to the physical models governing the most ubiquitous molecular and cellular processes, the physics behind the most common experimental techniques used in biology, bioengineering, and biophysics are covered. Three hours of lecture and two hours of lab per week.

Pre-Requisites

PHY-391. SENIOR PROJECT I
Credits: 1
Students will plan and execute a research project in the field of physics or at the intersection of physics and another related discipline. Projects can be theoretical, experimental or both and can include the design of unique experiments and simulations. A detailed progress report and presentation are required. Students pursuing a dual degree or double major may be eligible to combine this project with the capstone project of another program (subject to the approval of their advisors in both programs).
Click here for course fee.

Pre-Requisites
Senior standing in Physics

PHY-392. SENIOR PROJECT II
Credits: 2
Students will plan and execute a research project in the field of physics or at the intersection of physics and another related discipline. This is a continuation of PHY 391. A professional paper and progress report are required. Students will present the results of their work in an open-forum.

Students pursuing a dual degree or double major may be eligible to combine this project with the capstone project of another program (subject to the approval of their advisors in both programs).
Click here for course fee.

Pre-Requisites
[PHY-391]