DEPARTMENT OF MECHANICAL ENGINEERING & ENGINEERING MANAGEMENT

Department of Mechanical Engineering & Engineering Management
Chairperson: Dr. Henry Castejon

Faculty
Professors: Castejon, Ghorieshi, Kalim, Razavi
Associate Professors: Bednarz, Zhu
Assistant Professors: Baddour, Ghamari, Mu
Visiting Assistant Professor: Wu
Faculty of Practice: Greiner
Office Assistant: Colavitti

Mission
Our mission is to enable the professional development of students’ abilities for analysis, design, and innovation. Our department emphasizes engineering as a creative, hands-on profession. Teamwork, ethics, and communication permeate the educational experience to enhance the graduate's technical problem solving ability. Wilkes Engineering graduates will possess the vision, confidence, and will to pursue and assume increasing responsibilities in engineering and leadership within a global context.

Vision
Our vision is to be recognized as one of the finest engineering programs in Pennsylvania.

Values
We foster the values of Wilkes University: mentorship, scholarship, diversity, innovation, and community. Our unique contribution as an engineering department is that we advance the university values in practical ways, specifically:

- **Preparedness**: Prepare students to enter the workforce as engineers with skills and knowledge relevant to economic, environmental, social, and global needs.
- **Mentorship**: Create a nurturing environment to help students reach their full potential in academics, innovation, and career aspirations.
- **Integrity**: Teach students to make ethical professional choices, and live this value ourselves in our interactions with students and with each other.
- **Collaboration**: Partner with industry in order to improve our programs, find and fund research projects, and provide opportunities for students.
- **Hands-on Experience**: Encourage students to design, create, and experiment to reinforce their classroom learning.

Engineering
Total minimum number of credits required for a major in Applied and Engineering Sciences leading to the B.S. degree – 120
Total minimum number of credits required for a major in Engineering Management leading to the B.S. degree – 130
Total minimum number of credits required for a major in Mechanical Engineering leading to the B.S. degree – 130

Engineering is a creative profession in which technological problems are met within the framework of scientific possibilities, economic constraint, and cultural preference. The Wilkes University engineering programs provide the knowledge and investigative skills, both theoretical and experimental, to responsibly address professional and societal needs through modern curricula, hands-on experience, and a personalized academic environment. Students intending to major in Engineering are encouraged to be well prepared in the sciences and mathematics. Wilkes offers a Bachelor’s of Arts Degree in Physics, which provides a substantive physics foundation in a two-track program. Engineering students may also elect to complete a minor in Physics.

Wilkes University offers five engineering programs. Three programs—Electrical Engineering, Environmental Engineering, and Mechanical Engineering—maintain professional accreditation by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET, III Market Place, Suite 1050, Baltimore, MD 21202-4012; telephone: (410) 347-7700).

Two additional engineering programs are configured to provide greater flexibility to pursue depth and breadth in specific areas of interest to the student: Applied and Engineering Sciences and Engineering Management. Mechanical Engineering, Applied and Engineering Sciences, and Engineering Management are housed in the Department of Mechanical Engineering and Engineering Management, and Electrical Engineering and Physics are housed in the Department of Electrical Engineering and Physics.
Honors in Engineering

Upon the recommendation and approval of the Engineering faculty, the honor student in Engineering will be recognized upon completion of the following requirements:

- achievement of an overall GPA of 3.25 or better;
- receipt of grades of 3.00 or better in all engineering courses of his or her field of study;
- pursuit of independent research or special projects in engineering; and
- presentation of research results or special project at meetings, conferences, or through the publication of a paper.

The distinction "Honors in Engineering" will be recorded on the student’s transcript upon graduation.

Student Activities

Professional societies in which students participate include the American Society of Mechanical Engineers (ASME), the Society of Women Engineers (SWE), the Pennsylvania Society of Professional Engineers (PSPE), the Society of Automotive Engineers (SAE), the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), and the Engineering Student Activities Committee (ESAC). Students also participate in various on-campus activities and design competitions such as the Mini-Baja Off-Road Design Competition.

Department Transfer Credit Policy

No credits will be transferred to Wilkes University unless their prerequisites have been satisfied. Transfer credits must follow the proper course sequence as specified in the Wilkes bulletin. For transfer credits to be awarded the required prerequisite(s) must be satisfied during the first year at Wilkes.

Cooperative Education

An important feature of all engineering programs at Wilkes University is the Cooperative Education experience, a valuable option usually scheduled during the junior year. An internship is encouraged through summers and senior year even if it isn’t taken for credit. Participants derive three advantages from a co-op experience: a determination of how they wish to fill their elective courses; an enhanced ability to conduct a job search; and a greater recognition that career opportunities may be stimulating and fulfilling as well as financially rewarding. The Cooperative Education opportunity provides a natural extension of the college experience.

The co-op option for credit can only be taken one time for either 3 or 6 credits as described below:

1. The requirements for the 6 credit hours co-op are as follows:
 a. The co-op project should distinctly demonstrate an engineering design & analysis component.
 b. The student, working with his or her manager, should submit bi-weekly project reports to the faculty advisor.
 c. The working hours should not be less than 20 hours per week and the total 300 hours should spread out at least 10 weeks.
 d. The student should make a 15 minute final oral presentation to a general audience.
 e. The student should submit a final project report of approximately 25 pages (double-spaced) for the body of the report with no limit on details to be included in an appendix. The final report should include at least the background of the company, project background, technical work, and project reflection.

2. The requirements for the 3 credit hours co-op are as follows:
 a. The co-op project should distinctly demonstrate an engineering component.
 b. The student, working with his or her manager, should submit bi-weekly project reports to the faculty advisor.
 c. The working hours should not be less than 10 hours per week and the total 150 hours should spread out at least 10 weeks.
 d. The student should make a 10 minute final oral presentation to a general audience.
 e. The student should submit a final project report of approximately 15 pages (double-spaced) for the body of the report with no limit on details to be included in an appendix. The final report should include at least the background of the company, project background, technical work, and project reflection.

Student in Major Classification Categories

Students attain Sophomore standing after successfully completing all Freshman-year required engineering courses.
Students attain Junior standing after successfully completing all Sophomore-year required engineering courses.
Students attain Senior standing after successfully completing all Junior-year required engineering courses.
APPLIED AND ENGINEERING SCIENCES

Applied and Engineering Sciences

The four-year Bachelor of Science degree program in Applied and Engineering Science (A&ES) blends a core of engineering preparation with flexibility for students to focus on areas of specific interest. It is ideal for students with specific engineering interests outside the configuration of traditional engineering programs. Successful examples include medicine, performing arts engineering (sound, lighting, staging, recording), computer science, safety and reliability, information technology, and patent law. To this end, faculty and facilities center on the individual, incorporating the adoption of new technological developments with an emphasis on analysis, design, and application, on student-faculty-industry cooperative projects, on the concept of teamwork, and on the hands-on student utilization of modern laboratories and computer systems. Wilkes University does not maintain professional accreditation for the A&ES program.

The A&ES program demands careful planning by the student with his or her faculty advisor to assure a clear and well-planned program configured realistically to the students’ interests and needs.

Applied and Engineering Sciences Major - Required Courses and Recommended Course Sequence

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[MTH-111] Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>[CHM-117] Intro Chem Lab for Engineers</td>
<td>1</td>
</tr>
<tr>
<td>[CHM-118] Chemistry for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>[ME-180] CADD Lab</td>
<td>1</td>
</tr>
<tr>
<td>[ENG-101] Composition</td>
<td>4</td>
</tr>
<tr>
<td>[FYF-101] First-Year Foundations</td>
<td>3</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[MTH-112] Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>[PHY-201] General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>[ME-140] Scientific Programming</td>
<td>3</td>
</tr>
<tr>
<td>Distribution Requirement</td>
<td>6</td>
</tr>
</tbody>
</table>

Third Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PHY-202] General Physics II</td>
<td>4</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Distribution Requirement</td>
<td>6</td>
</tr>
</tbody>
</table>

Fourth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[EGR-200] Intro. to Materials Science</td>
<td>3</td>
</tr>
<tr>
<td>Free Electives</td>
<td>9</td>
</tr>
<tr>
<td>Distribution Requirements</td>
<td>3</td>
</tr>
</tbody>
</table>

Fifth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[EE-283] Electrical Measurement Lab</td>
<td>1</td>
</tr>
<tr>
<td>[ME-231] Statics</td>
<td>3</td>
</tr>
<tr>
<td>[EE-211] Electrical Circuits & Devices</td>
<td>3</td>
</tr>
<tr>
<td>Free Electives</td>
<td>6</td>
</tr>
<tr>
<td>Distribution Requirement</td>
<td>3</td>
</tr>
</tbody>
</table>

Sixth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[EGR-399] Cooperative Education* or Technical Electives**</td>
<td>6</td>
</tr>
<tr>
<td>Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>[EGR-201] Professionalism and Ethics</td>
<td>1</td>
</tr>
<tr>
<td>[EGM-320] Engineering Project Management & Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

Seventh Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[EGR-391] Senior Project I*</td>
<td>1</td>
</tr>
<tr>
<td>Technical Electives**</td>
<td>6</td>
</tr>
<tr>
<td>Free Elective</td>
<td>9</td>
</tr>
</tbody>
</table>

Eighth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[EGR-392] Senior Projects II*</td>
<td>2</td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
</tr>
</tbody>
</table>

* [EGR-391] and [EGR-392] may be replaced by EE/ EGM/ENV/ME 391 and 392, depending on the student’s concentration.
**Technical Electives may be selected from advisor approved science, math, or engineering courses numbered 200 or above.

Engineering...9
Mechanical Engineering...10
Physics...13
Engineering Management

The four-year Bachelor of Science degree program in Engineering Management (EGM) prepares students for eventual leadership responsibilities in technological environments. Traditional paths for EGM graduates include project management, project engineering, process management, new product development, manufacturing management, new product development processes, quality control, and reliability analysis.

The EGM program integrates the engineering disciplines of electrical and mechanical engineering with business. Flexibility exists for the student to develop concentrations in Information Systems or Entrepreneurship, for example. This program is attractive to companies seeking graduates who are well-rooted in engineering fundamentals, yet who are broadly interested in technology, competitive markets, and business development. Wilkes University does not maintain professional accreditation for the Engineering Management degree.

The EGM program demands careful academic program planning by the student with his or her faculty advisor to assure a clear and well-planned program configured realistically to the student's interests and needs.

The Master of Science degree in Engineering Management (MSEGEM) is also available. This degree program is described in the Graduate Bulletin.

Engineering Management Major - Required Courses and Recommended Course Sequence

First Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[[MTH-111]] Calculus I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>[[CHM-117]] Chemistry for Engineers Lab</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>[[CHM-118]] Chemistry for Engineers</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>[[ME-180]] CADD Lab</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>[[ENG-101]] English Composition</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>[[FYF-101]] First-Year Foundations</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[[MTH-112]] Calculus II</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>[[PHY-201]] General Physics I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>[[PHY-204]] Physics I Laboratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>[[ME-140]] Scientific Programming</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>[[EGR-200]] Introduction to Materials Science</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>[[EC-102]] Principles of Economics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Third Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[[MTH-211]] Introduction to Differential Equations</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>[[PHY-202]] General Physics II</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>[[PHY-205]] Physics II Laboratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[[EE-211]] Electrical Circuits and Devices</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>[[EE-283]] Electrical Measurements Lab</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>[[ME-231]] Statics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Distribution Requirement</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

Fifth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[[EGM-320]] Engineering Project Management and Analysis</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>[[ME-232]] Strength of Materials</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>[[ME-175]] Intro. to Manufacturing and Machining</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>[[MTH-150]] Statistics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>[[MKT-221]] Marketing</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>[[EGR-222]] Mechatronics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Sixth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[[EGM-399]] Cooperative Education** or Technical Elective*</td>
<td>6/3</td>
<td></td>
</tr>
<tr>
<td>[[EGR-201]] Professional Elective</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>[[EGM-321]] Quantitative Analysis & Programming Methods</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>[[ME-322]] Engineering Thermodynamics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>[[IBA-335]] Business Law</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Distribution Requirement</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Seventh Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[[EGM-391]] Senior Project I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>[[EGM-336]] Engineering and Management Models</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>[[EGM-325]] Project Analysis and Resource Allocation</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>[[EGR-398]] Principles of Quality Management</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>[[PPD-301]] Personal and Professional Development</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Eighth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[[EGM-392]] Senior Project II</td>
<td>2</td>
</tr>
<tr>
<td>[[EGM-310]] Project Decision Process</td>
<td>3</td>
</tr>
<tr>
<td>[[EGM-322]] Operations Analysis and Resource Allocation</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective*</td>
<td>3</td>
</tr>
<tr>
<td>[[PPD-401]] Personal and Professional Development</td>
<td>1</td>
</tr>
<tr>
<td>Distribution Requirement</td>
<td>3</td>
</tr>
</tbody>
</table>

Total: 15

*Technical electives may be chosen from any advisor-approved math, science, or engineering course numbered 200 or above.

**Consult with the Cooperative Education Coordinator to determine availability and proper scheduling of the Cooperative Education experience.*
ENGINEERING MANAGEMENT MINOR

Engineering Management Minor

A 21-credit Engineering Management (EGM) minor is a special curriculum established to offer critical business and technical management skills for engineering majors. These courses are normally not taken by typical engineering students in the design disciplines.

The following courses are required:

- [[EGM-320]] - Engineering Project Management and Analysis
- [[EC-102]] - Principles of Economics II
- [[EGM-321]] - Quantitative Analysis and Programming Methods
- [[EGM-336]] - Engineering and Management Models
- [[BA-335]] - Law and Business

Additionally, six elective credits must be completed from the following courses:*

- [[EGM-310]] - Project Decision Process
- [[EGM-315]] - Quality Practices for Design and Operations
- [[EGM-322]] - Operations Analysis and Resource Allocation
- [[EGM-325]] - Project Analysis and Resource Allocation
- [[EGM-399]] - Cooperative Education

*Engineering students should consult their academic advisors or their Department Chair regarding possible classification of these courses as “technical electives.” Some engineering programs require certain technical electives aligned to the major field of study. Other majors must consult their respective Chair for classification of these electives.
Mechanical Engineering

The Department of Mechanical Engineering and Engineering Management offers a four-year Bachelor of Science degree program in Mechanical Engineering. The four-year Bachelor of Science degree program in Mechanical Engineering (ME) is dedicated to the principle of preparing its students for industry and graduate study with the expectation of eventual leadership responsibilities. To that end, its faculty and facilities focus on an emphasis of design and industrial experience, student-faculty-industry cooperative projects, teamwork, the adoption of new technologies and on the hands-on student utilization of laboratories and computing systems. The Mechanical Engineering program maintains professional accreditation by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012; Telephone: (410) 347-7700).

The ME program is designed to achieve a balance among the major areas of Machine Design, Electro-Mechanical Systems, and Thermal Systems. Student may choose to specialize within the following areas: Thermal, Design, and Micro-Electro-Mechanical Systems. Descriptions of program objectives and outcomes are publicly posted in the Department and on the Department’s webpages.

The Master of Science degree in Mechanical Engineering (MSME) is also available. This degree program is described in the Graduate Bulletin.

Mechanical Engineering B.S. Degree - Required Courses and Recommended Course Sequence

First Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[MTH-111]</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>[CHM-117]</td>
<td>Chemistry for Engineers Lab</td>
<td>1</td>
</tr>
<tr>
<td>[CHM-118]</td>
<td>Chemistry for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>[ME-180]</td>
<td>CADD Lab</td>
<td>1</td>
</tr>
<tr>
<td>[ENG-101]</td>
<td>English Composition</td>
<td>4</td>
</tr>
<tr>
<td>[FYF-101]</td>
<td>First-Year Foundations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[MTH-112]</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>[PHY-201]</td>
<td>General Physics I</td>
<td>3</td>
</tr>
<tr>
<td>[PHY-204]</td>
<td>General Physics I Lab</td>
<td>1</td>
</tr>
<tr>
<td>[ME-140]</td>
<td>Scientific Programming</td>
<td>3</td>
</tr>
<tr>
<td>[EGR-200]</td>
<td>Intro. to Materials Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Distribution Requirement</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Third Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[MTH-211]</td>
<td>Intro. to Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fourth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PHY-202]</td>
<td>General Physics II</td>
<td>3</td>
</tr>
<tr>
<td>[PHY-205]</td>
<td>General Physics II Lab</td>
<td>1</td>
</tr>
<tr>
<td>[EE-211]</td>
<td>Electrical Circuits and Devices</td>
<td>3</td>
</tr>
<tr>
<td>[EE-283]</td>
<td>Electrical Measurements Lab</td>
<td>1</td>
</tr>
<tr>
<td>[ME-231]</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Distribution Requirement</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Fifth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[EGR-222]</td>
<td>Mechatronics</td>
<td>3</td>
</tr>
<tr>
<td>[ME-232]</td>
<td>Strength of Materials</td>
<td>3</td>
</tr>
<tr>
<td>[ME-234]</td>
<td>Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>[ME-322]</td>
<td>Engineering Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>[MTH-212]</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>[ME-175]</td>
<td>Intro. to Manufacturing and Machining</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Sixth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ME-399]</td>
<td>Cooperative Education* OR ME Technical Elective**</td>
<td>3</td>
</tr>
<tr>
<td>[EGR-201]</td>
<td>Professionalism and Ethics</td>
<td>1</td>
</tr>
<tr>
<td>[ME-323]</td>
<td>Fluid Mechanics Lab</td>
<td>1</td>
</tr>
<tr>
<td>[ME-324]</td>
<td>Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>[ME-332]</td>
<td>Vibration of Dynamic Systems</td>
<td>3</td>
</tr>
<tr>
<td>[ME-330]</td>
<td>Vibrations Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>[EGR-320]</td>
<td>Engineering Project Management & Analysis</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Distribution Requirement</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Seventh Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ME-326]</td>
<td>Heat Transfer Lab</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Science Elective**</td>
<td>3</td>
</tr>
<tr>
<td>[ME-384]</td>
<td>Mechanical Design Lab</td>
<td>3</td>
</tr>
<tr>
<td>[ME-391]</td>
<td>Senior Project I</td>
<td>1</td>
</tr>
<tr>
<td>[ME-317]</td>
<td>Robotics</td>
<td>3</td>
</tr>
</tbody>
</table>

Wilkes University Undergraduate Bulletin 2019 - 2020
Mechanical Engineering

Eighth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution Requirement</td>
<td>3</td>
</tr>
<tr>
<td>ME Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>[[ME-392]] Senior Project II</td>
<td>2</td>
</tr>
<tr>
<td>Technical Elective**</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective****</td>
<td>3</td>
</tr>
<tr>
<td>Distribution Requirement</td>
<td>3</td>
</tr>
</tbody>
</table>

14

Consult with the Cooperative Education Coordinator to determine availability and proper scheduling of the Cooperative Education experience.

Technical electives: Two (2) courses must be advisor-approved ME courses at the 200 level or above. One (1) course may be chosen from any advisor-approved math, science, or engineering course numbered 200 or above.

***Science elective may be chosen from these courses: CHM 256, EES 211, EES 240, GEO 211, MTH 214, MTH 231, MTH 314, MTH 351, MTH 361, MTH 362, PHY 203, PHY 312, PHY 374, PHY 377.*

****Free elective may be chosen from any course numbered 101 or above.

Mechanical Engineering... 10
EGR. ENGINEERING

EGR-200. INTRODUCTION TO MATERIALS SCIENCE
Credits: 3
Application of materials properties to engineering design. Introduction to atomic arrangements, crystal structures, imperfection, phase diagrams, and structure-property relations. Fundamentals of iron, steel, and non-ferrous materials. The behavior of materials in environmental conditions.

Pre-Requisites
[[CHM-118]] or [[CHM-115]].

EGR-201. PROFESSIONALISM AND ETHICS
Credits: 1
Responsibility of an engineer as a professional; ethics in science and engineering; role of professional societies; recent trends in technological innovations; career planning. Review of professional exam. Requirement: Junior standing in engineering.

EGR-214. MODELING OF PHYSICAL SYSTEMS
Credits: 3
Modeling of physical systems. Engineering applications of Laplace transforms, Fourier series, matrices, statistics and probability, and related topics to solve problems in electromagnetics, heat and mass transfer, control systems, fluid mechanics, robotics, engineering management, and communication systems. Emphasis on the use of simulation packages.

Pre-Requisites
[[EE-211]], [[MTH-112]].

EGR-219. INTRODUCTION TO WEAPONS SYSTEMS
Credits: 3
Introduction to military weapons and warfare, with a focus on how the modern period has resulted in greater complexity and the development of weapons systems. Basic principles of explosives, internal and exterior ballistics, calculation of probabilities of hit given randomness, fire control, guidance algorithms, radar and other sensors, detection and tracking, nuclear weapons and their effects.

Co-Requisites
[[PHY-202]] concurrent or before

EGR-222. MECHATRONICS
Credits: 3
Introduction to mechatronics system design with emphasis on using sensors to convert engineering system information into an electrical domain, signal conditioning and hardware integration, programming, and using actuators to effect system changes.

Pre-Requisites
[[EE-211]], [[EE-283]], [[ME-140]] and [[PHY-202]]

EGR-327. THIN FILM PROCESSING
Credits: 3
Nucleation and growth theory; crystalline, amorphous, epitaxial growth morphology. Deposition techniques like DC, RF, magnetron sputtering, ion beam sputtering, evaporation, chemical vapor deposition, physical vapor deposition. Structure, properties, and applications for specific thin film processing techniques.

Pre-Requisites
[[EGR-200]], [[PHY-203]].

EGR-391. SENIOR PROJECTS I
Credits: 1
Design and development of selected projects in the field of engineering under the direction of a staff member. Technical as well as economic factors will be considered in the design. A professional paper and detailed progress report are required.

Pre-Requisites
Senior standing in engineering

EGR-392. SENIOR PROJECTS II
Credits: 2
Design and development of selected projects in the field of engineering under the direction of a staff member. Technical as well as economic factors will be considered in the design. This is a continuation of [[EGR-391]]. A professional paper to be presented and discussed in an open forum is required.

Pre-Requisites
[[EGR-391]]

EGR-399. COOPERATIVE EDUCATION
Credits: 1-6
Professional cooperative education placement in a private or public organization related to the student’s academic objectives and career goals. In addition to their work experiences, students are required to submit weekly reaction papers and an academic project to a Faculty Coordinator in the student’s discipline. See the Cooperative Education section of this bulletin for placement procedures. Requirements: Junior standing; minimum 2.0 cumulative GPA; consent of the academic advisor; and approval of placement by the department chairperson.

EGR-498. LABORATORY TOPICS
Credits: Varies with topic
A study of topics of special interest not extensively treated in regularly offered laboratory courses.

Pre-Requisites
Will vary according to the specific topics course.
ME. MECHANICAL ENGINEERING

ME-140. SCIENTIFIC PROGRAMMING
Credits: 3
This course presents an introduction to computer programming with an emphasis on the techniques needed for data analysis and numerical problem solving for scientific and engineering applications. Basic programming idioms are presented including control structures, data types, methods for handling input and output as well as numerical methods such as array computing and vectorization. Emphasis is placed on proper software engineering practice as well as data analysis and presentation.

Click here for course fees

Co-Requisites
[MTH-111] concurrent or before

ME-175. INTRODUCTION TO MANUFACTURING & MACHINING
Credits: 1
Familiarizing with traditional machining processes and measuring equipment used in manufacturing. Hands-on experience with traditional and numerical control (NC) machines; various manufacturing processes and fundamentals of metrology.

Click here for course fees.

ME-180. CADD LAB
Credits: 1
An introduction to the symbolic and visual languages used in the various engineering fields. The use of the computer in design and drafting and familiarization with various software packages in the CADD (Computer Aided Design and Drafting) laboratory. Blueprint reading and printed circuit layouts. Emphasis will also be placed on the representation and interpretation of data in graphical form as well as the fundamentals of 2-dimensional and 3-dimensional graphic formats.

Click here for course fees.

ME-215. INTRODUCTION TO MANUFACTURING PROCESSES
Credits: 3
An introduction to manufacturing which examines traditional processes such as metal forming and casting and advanced manufacturing processes associated with thin film deposition, microfabrication and piezoelectric devices. Quality assurance and quality control issues in manufacturing.

Pre-Requisites
[ME-232]

ME-231. STATICS
Credits: 3
Statics of particles, including resolution of forces into components, vector sums, and concurrent force systems. Statics of rigid bodies and the study of moments. Equilibrium of bodies in two- and three-dimensions and determination of reactions. Analysis of trusses and frames. Determination of centroids and moments of inertia. Kinematics of particles, including displacement, velocity, and acceleration.

Pre-Requisites
[[PHY-201]]

Co-Requisites
[[MTH-112]] concurrent or before
[[ME-180]] concurrent or before

ME-232. STRENGTH OF MATERIALS
Credits: 3
Analysis of statically determinate and indeterminate structural systems; computation of reactions, shears, moments, and deflections of beams, trusses, and frames. Bending and torsion of slender bars; buckling and plastic behavior.

Pre-Requisites
[[ME-231]], [[ME-180]], [[MTH-112]], and [[EGR-200]] or [[CHM-115]].

ME-234. DYNAMICS
Credits: 3
This course continues the development of Newtonian mechanics with application to the motion of free bodies and mechanisms. Topics include rectilinear motion, vector calculus, particle motion, inertial and rotating reference frames, rigid body motion, rotational dynamics, linear and rotational momentum, work and kinetic energy, virtual work and collision.

Pre-Requisites
[[ME-231]], [[ME-180]], [[MTH-112]]

ME-298. TOPICS IN MECHANICAL ENGINEERING
Credits: 1-3
Selected topics in the field of mechanical engineering.

Pre-Requisites
Sophomore standing and permission of the instructor.

ME-312. MANUFACTURING SYSTEM ENGINEERING
Credits: 3

Pre-Requisites
Junior standing in mechanical engineering.
Course Descriptions

ME-314. INVERSE PROBLEMS IN MECHANICS
Credits: 3
Inverse problems are very common in engineering where the outputs are known but the inputs are unknown. This course will show how to properly setup a well-posed inverse problem, how to solve matrix inverses, and conduct hands on experiments by creating strain gage based force transducers.

Pre-Requisites
[[ME-333]]

ME-317. ROBOTICS
Credits: 3
The analysis and design of robots. Class covers the mechanical principles governing the kinematics of robotics. Course topics include forward kinematics and the determination of the closed form kinematic inversion, as well as workspace and trajectory generation. Class also covers the formation and computation of the manipulator Jacobian matrix.

Click here for course fee.

Pre-Requisites
[[EGR-222]] and [[ME-234]]

ME-321. FLUID MECHANICS
Credits: 3
Thermodynamics and dynamic principles applied to fluid behavior and to ideal, viscous and compressible fluids under internal and external flow conditions.

Pre-Requisites
[[ME-231]]

Co-Requisites
[[ME-322]] concurrent or before

ME-322. ENGINEERING THERMODYNAMICS
Credits: 3

Pre-Requisites
[[MTH-112]]

ME-323. FLUID MECHANICS LABORATORY
Credits: 1
Experiments with and analysis of basic fluid phenomena, hydrostatic pressure, Bernoulli theorem, laminar and turbulent flow, pipe friction, and drag coefficient.

Click here for course fees.

Co-Requisites
[[ME-321]] concurrent or before
[[ME-322]] concurrent or before

ME-324. HEAT TRANSFER
Credits: 3
Fundamental principles of heat transmission by conduction, convection, and radiation; application of the laws of thermodynamics; application of these principles to the solution of engineering problems.

Pre-Requisites
[[ME-321]] and [[MTH-211]]

ME-325. ENERGY SYSTEMS
Credits: 3
Fundamental principles of energy transmission and energy conversion. Comprehension of the physical systems in which the conversion of energy is accomplished. Primary factors necessary in the design and performance analysis of energy systems.

Pre-Requisites
[[ME-322]]

ME-326. HEAT TRANSFER LABORATORY
Credits: 1
Basic heat transfer modes are demonstrated experimentally. This includes conduction, convection, and radiation of heat as well as fin and heat exchanger.

Click here for course fees.

Pre-Requisites
[[ME-321]]

Co-Requisites
[[ME-324]] concurrent or before

ME-328. COMBUSTION ENGINES
Credits: 3
Investigation and analysis of internal and external combustion engines with respect to automotive applications. Consideration of fuels, carburetion, combustion, detonation, design factors, exhaust emissions and alternative power plants.

Pre-Requisites
[[ME-322]]

ME-330. VIBRATIONS LABORATORY
Credits: 1
Fees: 115
Experiments that complement vibration theories in ME 332, including spring and damper elements, underdamped vibration, torsional pendulum, resonance, transient and steady-state behaviors, base excitation, rotating unbalance, impulse response, and modal testing.

Click here for course fee.

Pre-Requisites
[[ME-234]], [[MTH-211]]

Co-Requisites
[[ME-332]] concurrent or before

ME-332. VIBRATION OF DYNAMIC SYSTEMS
Credits: 3
An introductory course in mechanical vibration dealing with free and forced vibration of single and multi-degrees of freedom for linear and nonlinear systems.

Pre-Requisites
[[ME-234]], [[MTH-211]]
ME-333. MACHINE DESIGN I
Credits: 3
The first course of a two-course sequence in design of machine elements dealing with theories of deformation and failure, strength and endurance limit, fluctuating stresses, and design under axial, bending, torsional, and combined stresses. A study of column buckling, fasteners, and gears.
Pre-Requisites
[[ME-232]]

ME-335. ENGINEERING MODELING AND ANALYSIS
Credits: 3
Introduction to finite element method for static and dynamic modeling and analysis of engineering systems. Finite element formulation and computer modeling techniques for stress, plane strain, beams, axisymmetric solids, heat conduction, and fluid flow problems. Solution of finite element equation and post processing of results for further use in the design problem.
Click here for course fee.
Pre-Requisites
[[ME-232]]
Co-Requisites
[[MTH-211]] concurrent or before

ME-337. MICRO-ELECTRO-MECHANICAL SYSTEMS ENGINEERING
Credits: 3
This course explores the principles of MEMS by understanding materials properties, micro-machining, sensor and actuator principles. The student will learn that MEMS are integrated micro-devices combining mechanical and electrical systems, which convert physical properties to electrical signals and, consequently, detection. This course provides the theoretical and exercises the hands-on experience by fabricating a micro-pressure sensor.
Click here for course fees.
Pre-Requisites
Junior standing in engineering

ME-338. MACHINE DESIGN II
Credits: 3
An advanced course in machine design topics that expands upon the concepts of Machine Design I. This course goes into more detail of the basic machine fundamentals introduced previously such as levers, belts, pulleys, gears, cams and power screws. Emphasis is also placed on 3D printing and the future of additive manufacturing.
Pre-Requisites
[[ME-333]]

ME-340. HEATING, VENTILATION AND AIR CONDITIONING
Credits: 3
Pre-Requisites
[[ME-322]]

ME-380. ADVANCED CADD
Credits: 3
An advanced course in Computer-Aided Drafting and Design (CADD) using SolidWorks. This course will introduce topics such as advanced modeling, advanced assemblies, Finite Element Analysis (FEA), and sheet metal.
Pre-Requisites
[[ME-180]], [[ME-335]]

ME-384. MECHANICAL DESIGN LABORATORY
Credits: 3
A laboratory for the development of open-ended problems in mechanical systems. Emphasis on experimental performance, data collection, evaluations, analysis, and design. This course provides hands-on experience with strain gauge application, measurement techniques, and analysis of topics in mechanical engineering.
Click here for course fees.
Pre-Requisites
[[ME-333]]

ME-391. SENIOR PROJECTS I
Credits: 1
Design and development of selected projects in the field of mechanical engineering under the direction of a staff member. Technical as well as economic factors will be considered in the design. A detailed progress report is required.
Click here for course fees.
Pre-Requisites
Senior standing in mechanical engineering, [[EGM-320]]

ME-392. SENIOR PROJECTS II
Credits: 2
Design and development of selected projects in the various fields of mechanical engineering under the direction of a staff member. Technical as well as economic factors will be considered in the design. A professional paper and detailed progress reports are required. This is a continuation of [[ME-391]]. An open-forum presentation and discussion of the professional paper are required.
Click here for course fees.
Pre-Requisites
[[ME-391]]

ME-395. INDEPENDENT RESEARCH
Credits: 1 - 3
Independent study and research for advanced students in the field of mechanical engineering under the direction of a staff member. A research paper at a level significantly beyond a term paper is required.
Pre-Requisites
Senior standing in mechanical engineering and approval of the department chairperson is required.

ME-396. INDEPENDENT RESEARCH
Credits: 1 - 3
Independent study and research for advanced students in the field of mechanical engineering under the direction of a staff member. A research paper at a level significantly beyond a term paper is required.
Pre-Requisites
Senior standing in mechanical engineering and approval of the department chairperson is required.
ME-397. SEMINAR
Credits: 1-3
Presentations and discussions of selected topics.

Pre-Requisites
Junior or Senior standing in mechanical engineering or special departmental permission.

ME-398. TOPICS IN MECHANICAL ENGINEERING
Credits: 1-3
Click here for course fees.

Pre-Requisites
Junior or senior standing in mechanical engineering.

ME-399. COOPERATIVE EDUCATION
Credits: 1-6
Professional cooperative education placement in a private or public organization related to the student’s academic objectives and career goals. In addition to their work experiences, students are required to submit weekly reaction papers and an academic project to a Faculty Coordinator in the student’s discipline. See the Cooperative Education section of this bulletin for placement procedures. Requirements: minimum junior standing in Engineering; 2.0 cumulative GPA; consent of the academic advisor; and approval of placement by the department chairperson. The co-op option for credit can only be taken one time for either 3 or 6 credits.

PHY. PHYSICS

PHY-198-298-398. TOPICS IN PHYSICS
Credits: variable
Selected topics in the field of physics. These may include one or more of the following: astronomy; geophysics; biophysics; nuclear power and waste; relativity; quantum mechanics; semi-conductors; cryogenics; health physics. May be repeated for credit.

Pre-Requisites
Varies with topic studied.

PHY-395-396. INDEPENDENT RESEARCH
Credits: 1 - 3
Independent study and research for advanced students in the field of physics under the direction of a staff member. A research paper at a level significantly beyond a term paper is required.

Pre-Requisites
Senior standing and approval of the department chairperson.

PHY-105. CONCEPTS IN PHYSICS
Credits: 3
Basic concepts of physical science, including the scientific method, will be studied. Theories, laws, and experiments from mechanics, electricity and magnetism, thermodynamics, optics, and atomic and nuclear physics may be included. Viewpoints will be classical and modern, including quantum and relativistic. Class meets for four hours per week: two hours of lecture and one two-hour lab each week.

Click here for course fees.

Pre-Requisites
No previous background in either science or college-level mathematics is required.

PHY-140. SCIENTIFIC PROGRAMMING
Credits: 3
This course presents an introduction to computer programming with an emphasis on the techniques needed for data analysis and numerical problem solving for scientific and engineering applications. Basic programming idioms are presented including control structures, data types, methods for handling input and output as well as numerical methods such as array computing and vectorization. Emphasis is placed on proper software engineering practice as well as data analysis and presentation. Two hours of lecture and two hours of laboratory per week.

Pre-Requisites
Or Concurrent
[[MTH-100]] or [[MTH-111]]

PHY-170. CONCEPTS IN PHYSICS AND CHEMISTRY
Credits: 4
An overview of Classical Mechanics, Thermodynamics, and the elementary principles of modern physics, including selected topics in basic chemistry and applications to human health. Emphasis is placed on basic physical and chemical principles and on algebraic calculations, scaling, units conversions, Cartesian graphing, acid and base reactions, and numerical problem solving. Three hours of demonstration and lecture, one hour of recitation, and two hours of lab per week.

Click here for course fees.

Pre-Requisites
Previous courses in chemistry, algebra, and geometry.

PHY-171. PRINCIPLES OF CLASSICAL AND MODERN PHYSICS
Credits: 4
An introductory course designed to promote and understanding of the more important fundamental laws and methods of mechanics and electricity and magnetism. Laboratory work to emphasize basic principles and to acquaint the student with measuring instruments and their use, as well as the interpretation of experimental data. Three hours of demonstration and lecture, one hour of recitation, and two hours of lab per week. Co-requisite: [[MTH-111]]

Click here for course fees.
PHY-174. APPLICATION OF CLASSICAL AND MODERN PHYSICS
Credits: 4
An introductory course designed to promote an understanding of the more important fundamental laws and methods of heat, optics, and modern physics. Laboratory work to emphasize basic principles and to acquaint the student with measuring instruments and their use, as well as the interpretation of experimental data. Three hours of demonstration and lecture, one hour of recitation, and two hours of lab per week. Co-requisite: [[MTH-111]]
Click here for course fees.

PHY-201. GENERAL PHYSICS I
Credits: 3
A thorough grounding in the concepts, principles, and laws of mechanics, and wave motion. Instruction by demonstration and lecture, recitation, and problem solving. Four hours of demonstration and lecture per week.
Click here for course fee.
Co-Requisites
[[MTH-111]] and [[PHY-204]]

PHY-202. GENERAL PHYSICS II
Credits: 3
A thorough grounding in the concepts, principles, and laws of Electricity and magnetism, optics and light. Instruction by demonstration and lecture, recitation, and problem solving. Four hours of demonstration and lecture per week.
Click here for course fee.
Pre-Requisites
[[PHY-201]]
Co-Requisites
[[MTH-112]]
[[PHY-205]]

PHY-203. MODERN PHYSICS
Credits: 3
Modern physics including the experimental basis, concepts, and principles of atomic and nuclear physics. Three hours of demonstration and lecture per week.
Pre-Requisites
[[PHY-202]].

PHY-204. GENERAL PHYSICS I LAB
Credits: 1
Fees: $100
This is a one-semester introductory physics laboratory course for science and engineering students. Experiments are performed to reinforce the concepts learned in PHY 201. Includes one two-hour laboratory exercise per week.
Co-Requisites
[[PHY-201]]

PHY-205. GENERAL PHYSICS II LAB
Credits: 1
Fees: $100
This is a one-semester introductory physics laboratory course for science and engineering students. Experiments are performed to reinforce the concepts learned in PHY 202. Includes one two-hour laboratory exercise per week.
Pre-Requisites
[[PHY-204]]
Co-Requisites
[[PHY-202]]

PHY-206. MODERN PHYSICS LAB
Credits: 1
Experiments leading to the development of relativity and quantum theory to reinforce abs expand upon the learning of fundamental concepts in EM theory, relativity, statistical mechanics, quantum mechanics, solid state physics, and nuclear physics.
Pre-Requisites
[[PHY-204]], [[PHY-205]], [[PHY-203]]
Co-Requisites
[[PHY-202]]

PHY-214. APPLIED PHYSICS
Credits: 3
Modeling of various problems in physical, chemical, biological, and environmental sciences, particularly physical dynamical systems; Includes application of ordinary differential equations, and Laplace, Fourier, and Z transforms to continuous and discrete processes, matrix mechanics and eigenvalue problems, statistics and probability, random processes and distribution functions.
2 hours of lecture and 2 hours of laboratory per week.
Pre-Requisites
[[MTH-211]], [[EE-140]] or [[CS-125]]

PHY-311. THERMODYNAMICS & STATISTICAL MECHANICS
Credits: 3
This course focuses on the laws of thermodynamics and other thermodynamic concepts including entropy, free energy, equilibrium, and fluctuations as well as their pivotal role in physics and other scientific disciplines. Topics in statistical mechanics will be covered including partition functions, ensembles, kinetic theory, and phase transitions. Three hours of lecture per week.
Pre-Requisites
[[PHY-203]] and [[MTH-211]].
PHY-312. ANALYTICAL MECHANICS
Credits: 3
Employs advanced mathematical tools to study applications in complex mechanical systems. It offers an advanced differential reformulation of Newton's laws to study dynamical systems in multiple dimensions, conservative force fields, damped and driven oscillations, two-body problem, central forces and planetary motion, and the rotational dynamics of rigid bodies. Additionally, the course delivers a thorough grounding in Lagrange's formalism and Hamiltonian mechanics, all being the essential foundations for the development of modern physics (relativity, quantum mechanics, and quantum field theory). Three hours of lecture per week.

Pre-Requisites
[PHY-202] and [MTH-211].

PHY-314. QUANTUM MECHANICS
Credits: 3
This course presents an intermediate level of Quantum Mechanics using the abstract formulation of linear vector spaces in the Dirac formalism. Topics covered include: spin, addition of angular momentum, scattering and bound particles, the harmonic oscillator, two-body problem and central potential wells in 3D, H-atom and H-like atoms, time-independent perturbation theory, identical particles and the He-atom. In addition to the foundations of Quantum Mechanics, the course offers a selection of advanced and modern topics like entanglement and quantum teleportation. Three hours of lecture per week.

Pre-Requisites
[PHY-203], [CHM-115], [MTH-211], and [MTH-212].

PHY-374. IMAGING IN BIOMEDICINE
Credits: 3
This course will cover different aspects of imaging important to medicine and biomedicine including optical microscopy, scanning probe microscopy, scanning electron microscopy, magnetic resonance, ultrasound X-ray, nuclear radiation, microwave and electro-/magneto-encephalographic techniques as well as image processing. Three hours of lecture and three hours of lab per week.

Pre-Requisites

PHY-377. BIOPHYSICS
Credits: 3
This course presents an overview of the important physical principles governing the behavior of cells and macromolecules. Upper-level mathematics that are useful to understand these phenomena are introduced in a way that is comprehensible to biology majors lacking background beyond basic calculus. In addition to the physical models governing the most ubiquitous molecular and cellular processes, the physics behind the most common experimental techniques used in biology, bioengineering, and biophysics are covered. Three hours of lecture and two hours of lab per week.

Pre-Requisites

PHY-391. SENIOR PROJECT I
Credits: 1
Students will plan and execute a research project in the field of physics or at the intersection of physics and another related discipline. Projects can be theoretical, experimental or both and can include the design of unique experiments and simulations. A detailed progress report and presentation are required. Students pursuing a dual degree or double major may be eligible to combine this project with the capstone project of another program (subject to the approval of their advisors in both programs).

Pre-Requisites
Senior standing in Physics

PHY-392. SENIOR PROJECT II
Credits: 2
Students will plan and execute a research project in the field of physics or at the intersection of physics and another related discipline. This is a continuation of PHY 391. A professional paper and progress report are required. Students will present the results of their work in an open-forum.

Pre-Requisites
[PHY-391]

Click here for course fee.